The localization of glycollate-pathway enzymes in Euglena.

نویسندگان

  • N Collins
  • M J Merrett
چکیده

Isolation of organelles from broken-cell suspensions of phototrophically grown Euglena gracilis Klebs was achieved by isopycnic centrifugation on sucrose gradients. 2. Equilibrium densities of 1.23g/cm3 for peroxisome-like particles, 1.22g/cm3 for mitochondria and 1.17g/cm3 for chloroplasts were recorded. 3. The enzymes glycollate dehydrogenase, glutamate-glyoxylate aminotransferase, serineglyoxylate aminotransferase, aspartate-alpha-oxoglutarate aminotransferase, hydroxy pyruvate reductase and malate dehydrogenase were present in peroxisome-like particles. 4. Unlike higher plants glycollate dehydrogenase and glutamate-glyoxylate aminotransferase were present in the mitochondria of Euglena. 5. Rates of glycollate and D-lactate oxidation were additive in the mitochondria, and, although glycollate dehydrogenase was inhibited by cyanide, D-lactate dehydrogenase activity was unaffected. 6. Glycollate oxidation was linked to O2 uptake in mitochondria but not in peroxisome-like particles. This glycollate-dependent O2 uptake was inhibited by antimycin A or cyanide. 7. The physiological significance of glycollate metabolism in Euglena mitochondria is discussed, with special reference to its role in photorespiration in algae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Occurrence and operation of the glycollate--glyoxylate shuttle in mitochondria of Euglena gracilis Z.

Both glyoxylate reductase (NADP+) and glycollate dehydrogenase were located exclusively in mitochondria in Euglena gracilis and constitute the glycollate--glyoxylate shuttle, whose existence in higher plants was thought doubtful, owing to different subcellular locations of the two enzymes. Disrupted Euglena mitochondria showed a glycollate-dependent NADPH oxidation, indicating actual operation ...

متن کامل

Purification and some properties of glyoxylate reductase (NADP+) and its functional location in mitochondria in Euglena gracilis z.

Euglena mitochondria contain both glyoxylate reductase (NADP+) and glycollate dehydrogenase to constitute the glycollate-glyoxylate cycle [Yokota & Kitaoka (1979) Biochem. J. 184, 189-192]. Euglena glyoxylate reductase (NADP+) was purified and its submitochondrial location was determined in order to elucidate the cycle. The purified glyoxylate reductase was homogeneous on polyacrylamide-gel ele...

متن کامل

The intracellular localization of glycollate oxidoreductase in Euglena gracilis.

1. Lowering of the concentration of carbon dioxide in air available to phototrophically growing Euglena cultures from 5% to the normal value (0.03%) resulted in an increased specific activity of glycollate oxidoreductase. 2. The effects of chloramphenicol and cycloheximide suggested that this increase in activity was due to enzyme synthesis de novo on cytoplasmic ribosomes. 3. The K(m) for glyc...

متن کامل

The Utilization of Glycollate by Micrococcus Denitrificans: the Beta-hydroxyaspartate Pathway.

1. Micrococcus denitrificans utilized glycollate as sole carbon source for aerobic growth. Glyoxylate was utilized less well, and though glycine alone did not support growth it enhanced growth on glyoxylate. 2. During growth on glycollate, (14)C was incorporated from [2-(14)C]glycollate into glycine and thence into aspartate, malate and glutamate. No phosphoglycerate was labelled at the earlies...

متن کامل

Dysregulated Expression and Sub cellular Localization of Base Excision Repair (BER) Pathway Enzymes in Gallbladder Cancer

Base excision repair (BER) pathway is one of the repair systems that have an impact on the radiotherapy and chemotherapy for the cancer patients. The molecular pathogenesis of gallbladder cancer is not known extensively. In the present study we investigated whether the expression of AP endonuclease 1 (APE1) and DNA polymerase β (DNA pol β), key enzymes of BER pathway has any clinical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 148 2  شماره 

صفحات  -

تاریخ انتشار 1975